Gendered Selection Strategies in Genetic Algorithms for Optimization

نویسندگان

  • José Sánchez-Velazco
  • John A. Bullinaria
چکیده

The selection operator in the standard genetic algorithm (GA) determines which individuals are chosen from a relatively homologous population for mating and crossover. This operator is crucial for the performance of the GA, since it may lead the algorithm to premature convergence and limited search scope (or genetic diversity) by repeatedly choosing very strong individuals with similar genetic code. In the model proposed here, a sexual strategy is introduced by simulating distinct gender groups, with each gender having different partner selection criteria, and a model of sexual selection that allows for competition between individuals in the same group and co-operation when a mating relation is established. As in natural systems, crossover is only permitted between individuals in contrasting gender groups, and the mutation probabilities depend on the individual’s gender. Experimental results on some standard optimization problems provides evidence that this is a useful strategy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of Portfolio Optimization for Investors at Different Levels of Investors' Risk Aversion in Tehran Stock Exchange with Meta-Heuristic Algorithms

The gaining returns in line with risks is always a major concern for market play-ers. This study compared the selection of stock portfolios based on the strategy of buying and retaining winning stocks and the purchase strategy based on the level of investment risks. In this study, the two-step optimization algorithms NSGA-II and SPEA-II were used to optimize the stock portfolios. In order to de...

متن کامل

تعیین ماشین‌های بردار پشتیبان بهینه در طبقه‌بندی تصاویر فرا طیفی بر مبنای الگوریتم ژنتیک

Hyper spectral remote sensing imagery, due to its rich source of spectral information provides an efficient tool for ground classifications in complex geographical areas with similar classes. Referring to robustness of Support Vector Machines (SVMs) in high dimensional space, they are efficient tool for classification of hyper spectral imagery. However, there are two optimization issues which s...

متن کامل

بهینه سازی قابهای فولادی با استفاده از الگوریتم وراثتی اصلاح شده هوشمند

One of the major purposes of optimization in civil engineering is to perform a suitable design for the structure. This goal has to fulfill technical criteria and contain the minimum economical costs. Building frames are of the most customary civil engineering structures. Therefore, optimization of these types of structures could be of a great concern from the economical viewpoints. One of the c...

متن کامل

A Novel Intrusion Detection Systems based on Genetic Algorithms-suggested Features by the Means of Different Permutations of Labels’ Orders

Intrusion detection systems (IDS) by exploiting Machine learning techniques are able to diagnose attack traffics behaviors. Because of relatively large numbers of features in IDS standard benchmark dataset, like KDD CUP 99 and NSL_KDD, features selection methods play an important role. Optimization algorithms like Genetic algorithms (GA) are capable of finding near-optimum combination of the fe...

متن کامل

Using and comparing metaheuristic algorithms for optimizing bidding strategy viewpoint of profit maximization of generators

With the formation of the competitive electricity markets in the world, optimization of bidding strategies has become one of the main discussions in studies related to market designing. Market design is challenged by multiple objectives that need to be satisfied. The solution of those multi-objective problems is searched often over the combined strategy space, and thus requires the simultaneous...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003